# Discriminant

We call it discriminating the radical B2-4ac which is represented by the Greek letter (delta). We can now write in this way Bhaskara's formula: According to the discriminant, we have three cases to consider:

1st case: the discriminant is positive .
The value of is real and the equation has two different real roots, represented as follows:  Example:

• For which values ​​of k the equation x² - 2x + k- 2 = Does it admit real and unequal roots?
SolutionFor the equation to admit real and unequal roots, we must have  Therefore, the values ​​of k must be less than 3.

2nd case: the discriminant is null The value of is null and the equation has two real and equal roots, represented as follows: Example:

• Determine the value of P, so that the equation x² - (P - 1) x + p-2 = 0 has equal roots.

Solution:
For the equation to admit equal roots, it is necessary that . Therefore, the value of P é 3.

3rd case: the discriminant is negative .
The value of doesn't exist in GOtherefore there are no real roots. The roots of the equation are complex number.

Example:

• For what values ​​of m does equation 3x² + 6x +m = 0 admit no real root?
Solution:In order for the equation to have no real root, we must have  Therefore, the values ​​of m must be greater than 3.

 summing upGiven the equation ax² + bx + c = 0, we have: For , the equation has two different real roots. For , the equation has two equal real roots. For , the equation has no real roots.
Next: Literal Equations